首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
地球物理   23篇
地质学   74篇
海洋学   7篇
天文学   1篇
综合类   1篇
自然地理   16篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   10篇
  2008年   12篇
  2007年   6篇
  2006年   10篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1995年   3篇
  1991年   1篇
  1987年   1篇
  1977年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
81.
Abstract

The hydrological data (since 1953) of the Llanganuco basin (87.0 km2, 39% glacierized) show an increase of the glacial melting during the last quarter of the 20th century. These results were supplemented (since the end of 2000) by the data of the small basin of Artesoncocha (8.4 km2, 79% glacierized). The basin runoff is well correlated to the atmospheric temperature derived from the NOAA-NCEP re-analysis above the Cordillera Blanca. At the monthly time scale, the temperature is a good proxy of the glacier melting. The retreat of several glaciers in the Cordillera Blanca has been well documented for 50 years, highlighting an acceleration of the deglaciation in the mid-1970s. The use of these data of various origins permits one to model the behaviour of glaciers, especially the meltwater production, and then to predict their future evolution. The model was calibrated over the 1950–2000 period, thus providing a possible optimistic evolution range (underestimation if the climate change becomes more intense). The forcing of the model by forecasts of the future temperature evolution above the Cordillera Blanca, derived from the regionalization of global climatic models, allows improvement of the estimations only based on past glacial behaviour.  相似文献   
82.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   
83.
Biogenic bottom features, animal burrows and biological activities interact with the hydrodynamics of the sediment–water interface to produce altered patterns of sediment erosion, transport and deposition which have consequences for large-scale geomorphologic features. It has been suggested that depending on the hydrodynamic status of the habitat, the biological activity on the bottom may have a variety of effects. In some cases, different bioturbation activities by the same organism can result in different consequences. The burrowing crab Neohelice granulata is the most important bioturbator at SW Atlantic saltmarshes and tidal plains. Because of the great variety of habitats that this species may inhabit, it is possible to compare its bioturbation effects between zones dominated by different hydrodynamic conditions. Internal marsh microhabitats, tidal creeks bottoms and basins, and open mudflats were selected as contrasting zones for the comparison on a large saltmarsh at Bahía Blanca Estuary (Argentina). Crab burrows act as passive traps of sediment in all zones, because their entrances remain open during inundation periods at high tide. Mounds are generated when crabs remove sediments from the burrows to the surface and become distinctive features in all the zones. Two different mechanisms of sediment transport utilizing mounds as sediment sources were registered. In the first one, parts of fresh mound sediments were transported when exposed to water flow during flooding and ebbing tide, with higher mound erosion where currents were higher as compared to internal marsh habitats and open mudflats. In the second mechanism, mounds exposed to atmospheric influence during low tide became desiccated and cracked forming ellipsoidal blocks, which were then transported by currents in zones of intense water flow in the saltmarsh edge. Sedimentary dynamics varied between zones; crabs were promoting trapping of sediments in the internal saltmarsh (380 g m−2 day−1) and open mudflats (1.2 kg m−2 day−1), but were enhancing sediment removal in the saltmarsh edge (between 10 and 500 g m−2 day−1 in summer). The implication is that biologically mediated sedimentological changes could be different among microhabitats, potentially leading to contrasting geomorphologic effects within a particular ecosystem.  相似文献   
84.
An analysis has been made of sedimentary systems involved in the rapid silting of a reservoir constructed in 1974 in Alhama de Granada (S. Spain); in only 30 years the storage capacity of the reservoir has shrunk by 80% and its perimeter has decreased by 64%. A study of sediment lithofacies identified in a series of shallow trenches and of georadar facies identified in a series of almost 900 m lines of ground penetrating radar (GPR) images, together with a survey of surface geology, has identified 3 alluvial systems (2 transversal systems and a longitudinal system) whose deltas have filled in the reservoir. Thus, there are three phases in the evolution of the reservoir siltation: (1) an initial stage (1974–1977) typified by northward progradation of the longitudinal river delta of about 100 m year−1 and an eastward progradation of the transversal system delta of about 20 m year−1; (2) an intermediate stage (1977–1984) in which the longitudinal river delta progradation slowed to 25 m year−1 and the axial drainage became obstructed due to the considerable eastward progradation of the transversal delta; and (3) a final phase (1984–present) in which there have been few changes in the areal distribution of the deltas apart from a southeastward expansion of the transversal delta. Generally, aggradational growth patterns (vertical accretion) have dominated in this final phase. The lithology of the source area, the slope and precipitation distribution has a significant effect not only on the sediment supply, but also indirectly on the creation of accommodation space and on the evolution of stratal growth patterns.  相似文献   
85.
The Antucoya porphyry copper deposit (300 Mt at 0.45% total Cu) is one of the largest deposits of a poorly known Early Cretaceous porphyry belt in the Coastal Cordillera of northern Chile. It is related to a succession of granodioritic and tonalitic porphyritic stocks and dikes that were emplaced within Jurassic andesitic rocks of the La Negra Formation immediately west of the N–S trending sinistral strike-slip Atacama Fault Zone. New zircon SHRIMP U–Pb data indicate that the porphyries of Antucoya crystallized within the time span from 142.7 ± 1.6 to 140.6 ± 1.5 Ma (±2 σ), and late, unmineralized, NW–SE trending dacite dikes with potassic alteration and internal deformation crystallized at 141.9 ± 1.4 Ma. The Antucoya porphyry copper system appears to be formed after a change of stress conditions along the magmatic arc from extensional in the Late Jurassic to transpressive during the Early Cretaceous and provides support for an Early Cretaceous metallogenic episode of porphyry-type mineralization along the Coastal Cordillera of northern Chile.  相似文献   
86.
The Llanos foothills are located in the frontal thrust zone of the Eastern Cordillera in Colombia in a complex environment that BP has been exploring actively since 1988. This exploration has resulted in the discovery of several fields with a variety of hydrocarbon fluids (gas condensate and volatile oil) in very tight quartz-arenites. The structural style and complexity of this fold-and-thrust belt changes along the trend from single frontal structures to an imbricate of up to five thrust sheets in a triangle zone. In highly complex environments, the seismic image quality is poor, and interpretation becomes very challenging. The structural models of the area have evolved as more data have been acquired. The initial structural model required inversion of the basin at the end of the Andean orogeny. The structural style changed to an in-sequence imbricate thrust stack with very long, trailing back limbs that return to regional elevation and finalize in a tighter structures with short back limbs. The concept of early deformation and multiple phases has been introduced. Three main phases have been distinguished: (1) an early event during the deposition of the Lower Carbonera (39–29 Ma), with incipient structures formed to create syntectonic deposition; (2) a phase of steady subsidence that increased notably at the end of the period (29–7 Ma); and (3) the latest phase (7–0 Ma), when most deformation and uplifting occurred. The migration of hydrocarbons happened simultaneously with the deformation, and its final distribution, amount, and variation in composition is related to the structural evolution of the area.  相似文献   
87.
New U–Pb SHRIMP ages in zircon, Ar–Ar ages in micas and amphiboles, Nd–Sr isotopes, and major and REE geochemical analyses in granitic gneisses and granitic stocks of the Central Cordillera of Colombia indicate the presence of a collisional orogeny in Permo-Triassic times in the Northern Andes related to the construction of the Pangea supercontinent. The collision is recorded by metamorphic U–Pb SHRIMP ages in inherited zircons around 280 Ma and magmatic U–Pb SHRIMP ages in neoformed zircons around 250 Ma within syntectonic crustal granitic gneisses. Magmatic U–Pb SHRIMP and Ar–Ar Triassic ages around 228 Ma in granitic stocks indicate the presence of late tectonic magmatism related to orogenic collapse and the beginning of the breakup of the supercontinent. During this period, the Central Cordillera of Colombia would have been located between the southern United States and northern Venezuela, in the leading edge of the Gondwana supercontinent.  相似文献   
88.
89.
An autochthonous geological model for the eastern Andes of Ecuador   总被引:3,自引:1,他引:3  
We describe a traverse across the Cordillera Real and sub-Andean Zone of Ecuador, poorly known areas with very little detailed mapping and very little age control. The spine of the Cordillera comprises deeply eroded Triassic and Jurassic plutons, the roots of a major arc, emplaced into probable Palaeozoic pelites and metamorphosed volcanic rocks. The W flank comprises a Jurassic (?) submarine basaltic–andesitic volcanic sequence, which grades up into mixed Jurassic/Cretaceous volcanic and sedimentary rocks of the Inter-Andean Valley. The sub-Andean Zone, on the E flank of the Cordillera, comprises a newly recognized Cretaceous basin of cleaved mudrocks, quartz arenites and limestones. East of the syndepositional Cosanga Fault, the Cretaceous basin thins into a condensed sequence that is indistinguishable from the rocks of the adjacent hydrocarbon-bearing Oriente Basin. The principal penetrative deformation of the Cordillera Real was probably latest Cretaceous/Palaeocene. It telescoped the magmatic belts, but shortening was largely partitioned into the pelites between plutons. The plutons suffered inhomogenous deformation; some portions completely escaped tectonism. The pelites conserve two foliations. The earliest comprises slaty cleavage formed under low- or sub-greenschist conditions. The later is a strong schistosity defined by new mica growth. It largely transposed and obliterated the first. Both foliations may have developed during a single progressive deformation. We find inappropriate recent terrane models for the Cordillera Real and sub-Andean Zone of Ecuador. Instead we find remarkable similarities from one side of the Cordillera to the other, including a common structural history. In place of sutures, we find mostly intrusive contacts between major plutons and pelites. Triassic to Cretaceous events occurred on the autochthonous western edge of the Archaean Guyana Shield. The latest Cretaceous–Paleocene deformation is interpreted as the progressive collision of an oceanic terrane(s) with the South American continent. Young fault movements have subsequently juxtaposed different structural levels through the Cordillera Real orogen.  相似文献   
90.
The Angélica copper deposit is situated at the southernmost sector of the Jurassic Tocopilla plutonic complex in the North Chilean Coastal Cordillera. This deposit occurs in monzonitic to monzodioritic rocks, and has platelike orebodies with no appreciable hydrothermal alteration nor sulfide mineralization. The mineralized zones are located in the western side of the two main normal faults with NE and NW orientations, and are characterized principally by impregnation of supergene copper products of atacamite and minor amounts of chrysocolla, lavendulan and “black copper”. Generally, chrysocolla is more abundant at a distal NE sector of the deposit. The black copper is Cu‐Fe‐Mn‐Si‐Cl‐rich multimineral aggregates composed of atacamite with minor amounts of quartz, pseudomalachite, dioptase, neotocite, gypsum, paratacamite and melanothallite, and its surface exhibits nanometer‐sized cylindrical morphologies. All these characteristics suggest an exotic origin for the Angélica copper deposit. A few vein‐type copper deposits situated at the southwestern sector along the NE‐oriented fault are inferred as the possible source of the Angélica copper deposit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号